Metamath Proof Explorer


Theorem qlaxr3i

Description: A variation of the orthomodular law, showing CH is an orthomodular lattice. (This corresponds to axiom "ax-r3" in the Quantum Logic Explorer.) (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses qlaxr3.1 A C
qlaxr3.2 B C
qlaxr3.3 C C
qlaxr3.4 C C = A B A B
Assertion qlaxr3i A = B

Proof

Step Hyp Ref Expression
1 qlaxr3.1 A C
2 qlaxr3.2 B C
3 qlaxr3.3 C C
4 qlaxr3.4 C C = A B A B
5 1 2 chjcli A B C
6 5 chshii A B S
7 1 2 chub1i A A B
8 incom A B A B = A B A B
9 1 choccli A C
10 2 choccli B C
11 1 2 cmj1i A 𝐶 A B
12 1 5 11 cmcmii A B 𝐶 A
13 5 1 12 cmcm2ii A B 𝐶 A
14 1 2 cmj2i B 𝐶 A B
15 2 5 14 cmcmii A B 𝐶 B
16 5 2 15 cmcm2ii A B 𝐶 B
17 5 9 10 13 16 fh1i A B A B = A B A A B B
18 8 17 eqtr3i A B A B = A B A A B B
19 3 chjoi C C =
20 19 4 eqtr3i = A B A B
21 choc0 0 =
22 9 10 chjcli A B C
23 22 5 chdmm1i A B A B = A B A B
24 20 21 23 3eqtr4i 0 = A B A B
25 22 5 chincli A B A B C
26 h0elch 0 C
27 25 26 chcon3i A B A B = 0 0 = A B A B
28 24 27 mpbir A B A B = 0
29 18 28 eqtr3i A B A A B B = 0
30 5 9 chincli A B A C
31 5 10 chincli A B B C
32 30 31 chj00i A B A = 0 A B B = 0 A B A A B B = 0
33 29 32 mpbir A B A = 0 A B B = 0
34 33 simpli A B A = 0
35 1 6 7 34 omlsii A = A B
36 2 1 chub2i B A B
37 33 simpri A B B = 0
38 2 6 36 37 omlsii B = A B
39 35 38 eqtr4i A = B