Metamath Proof Explorer


Theorem qtopid

Description: A quotient map is a continuous function into its quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Assertion qtopid JTopOnXFFnXFJCnJqTopF

Proof

Step Hyp Ref Expression
1 simpr JTopOnXFFnXFFnX
2 dffn4 FFnXF:XontoranF
3 1 2 sylib JTopOnXFFnXF:XontoranF
4 fof F:XontoranFF:XranF
5 3 4 syl JTopOnXFFnXF:XranF
6 elqtop3 JTopOnXF:XontoranFxJqTopFxranFF-1xJ
7 3 6 syldan JTopOnXFFnXxJqTopFxranFF-1xJ
8 7 simplbda JTopOnXFFnXxJqTopFF-1xJ
9 8 ralrimiva JTopOnXFFnXxJqTopFF-1xJ
10 qtoptopon JTopOnXF:XontoranFJqTopFTopOnranF
11 3 10 syldan JTopOnXFFnXJqTopFTopOnranF
12 iscn JTopOnXJqTopFTopOnranFFJCnJqTopFF:XranFxJqTopFF-1xJ
13 11 12 syldan JTopOnXFFnXFJCnJqTopFF:XranFxJqTopFF-1xJ
14 5 9 13 mpbir2and JTopOnXFFnXFJCnJqTopF