Metamath Proof Explorer


Theorem qusmulrng

Description: Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng . Similar to qusmul2 . (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 28-Feb-2025) TODO: Use in proof of quscrng if moved to main.

Ref Expression
Hypotheses qusmulrng.e ˙=R~QGS
qusmulrng.h H=R/𝑠˙
qusmulrng.b B=BaseR
qusmulrng.p ·˙=R
qusmulrng.a ˙=H
Assertion qusmulrng RRngS2IdealRSSubGrpRXBYBX˙˙Y˙=X·˙Y˙

Proof

Step Hyp Ref Expression
1 qusmulrng.e ˙=R~QGS
2 qusmulrng.h H=R/𝑠˙
3 qusmulrng.b B=BaseR
4 qusmulrng.p ·˙=R
5 qusmulrng.a ˙=H
6 2 a1i RRngS2IdealRSSubGrpRH=R/𝑠˙
7 3 a1i RRngS2IdealRSSubGrpRB=BaseR
8 3 1 eqger SSubGrpR˙ErB
9 8 3ad2ant3 RRngS2IdealRSSubGrpR˙ErB
10 simp1 RRngS2IdealRSSubGrpRRRng
11 eqid 2IdealR=2IdealR
12 3 1 11 4 2idlcpblrng RRngS2IdealRSSubGrpRa˙bc˙da·˙c˙b·˙d
13 10 anim1i RRngS2IdealRSSubGrpRbBdBRRngbBdB
14 3anass RRngbBdBRRngbBdB
15 13 14 sylibr RRngS2IdealRSSubGrpRbBdBRRngbBdB
16 3 4 rngcl RRngbBdBb·˙dB
17 15 16 syl RRngS2IdealRSSubGrpRbBdBb·˙dB
18 6 7 9 10 12 17 4 5 qusmulval RRngS2IdealRSSubGrpRXBYBX˙˙Y˙=X·˙Y˙
19 18 3expb RRngS2IdealRSSubGrpRXBYBX˙˙Y˙=X·˙Y˙