Metamath Proof Explorer


Theorem qusmul2

Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024)

Ref Expression
Hypotheses qusmul2.h Q=R/𝑠R~QGI
qusmul2.v B=BaseR
qusmul2.p ·˙=R
qusmul2.a ×˙=Q
qusmul2.1 φRRing
qusmul2.2 φI2IdealR
qusmul2.3 φXB
qusmul2.4 φYB
Assertion qusmul2 φXR~QGI×˙YR~QGI=X·˙YR~QGI

Proof

Step Hyp Ref Expression
1 qusmul2.h Q=R/𝑠R~QGI
2 qusmul2.v B=BaseR
3 qusmul2.p ·˙=R
4 qusmul2.a ×˙=Q
5 qusmul2.1 φRRing
6 qusmul2.2 φI2IdealR
7 qusmul2.3 φXB
8 qusmul2.4 φYB
9 1 a1i φQ=R/𝑠R~QGI
10 2 a1i φB=BaseR
11 6 2idllidld φILIdealR
12 eqid LIdealR=LIdealR
13 12 lidlsubg RRingILIdealRISubGrpR
14 5 11 13 syl2anc φISubGrpR
15 eqid R~QGI=R~QGI
16 2 15 eqger ISubGrpRR~QGIErB
17 14 16 syl φR~QGIErB
18 eqid 2IdealR=2IdealR
19 2 15 18 3 2idlcpbl RRingI2IdealRxR~QGIyzR~QGItx·˙zR~QGIy·˙t
20 5 6 19 syl2anc φxR~QGIyzR~QGItx·˙zR~QGIy·˙t
21 2 3 ringcl RRingpBqBp·˙qB
22 21 3expb RRingpBqBp·˙qB
23 5 22 sylan φpBqBp·˙qB
24 23 caovclg φyBtBy·˙tB
25 9 10 17 5 20 24 3 4 qusmulval φXBYBXR~QGI×˙YR~QGI=X·˙YR~QGI
26 7 8 25 mpd3an23 φXR~QGI×˙YR~QGI=X·˙YR~QGI