Description: The Group quotient equivalence relation for the whole group is the cartesian product, i.e. all elements are in the same equivalence class. (Contributed by Thierry Arnoux, 16-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | qustriv.1 | |
|
Assertion | qusxpid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qustriv.1 | |
|
2 | 1 | subgid | |
3 | eqid | |
|
4 | 1 3 | eqger | |
5 | errel | |
|
6 | 2 4 5 | 3syl | |
7 | relxp | |
|
8 | 7 | a1i | |
9 | df-3an | |
|
10 | simpl | |
|
11 | eqid | |
|
12 | 1 11 | grpinvcl | |
13 | 12 | adantrr | |
14 | simprr | |
|
15 | eqid | |
|
16 | 1 15 | grpcl | |
17 | 10 13 14 16 | syl3anc | |
18 | 17 | ex | |
19 | 18 | pm4.71d | |
20 | 9 19 | bitr4id | |
21 | ssid | |
|
22 | 1 11 15 3 | eqgval | |
23 | 21 22 | mpan2 | |
24 | brxp | |
|
25 | 24 | a1i | |
26 | 20 23 25 | 3bitr4d | |
27 | 6 8 26 | eqbrrdv | |