Metamath Proof Explorer


Theorem qusxpid

Description: The Group quotient equivalence relation for the whole group is the cartesian product, i.e. all elements are in the same equivalence class. (Contributed by Thierry Arnoux, 16-Jan-2024)

Ref Expression
Hypothesis qustriv.1 B=BaseG
Assertion qusxpid GGrpG~QGB=B×B

Proof

Step Hyp Ref Expression
1 qustriv.1 B=BaseG
2 1 subgid GGrpBSubGrpG
3 eqid G~QGB=G~QGB
4 1 3 eqger BSubGrpGG~QGBErB
5 errel G~QGBErBRelG~QGB
6 2 4 5 3syl GGrpRelG~QGB
7 relxp RelB×B
8 7 a1i GGrpRelB×B
9 df-3an xByBinvgGx+GyBxByBinvgGx+GyB
10 simpl GGrpxByBGGrp
11 eqid invgG=invgG
12 1 11 grpinvcl GGrpxBinvgGxB
13 12 adantrr GGrpxByBinvgGxB
14 simprr GGrpxByByB
15 eqid +G=+G
16 1 15 grpcl GGrpinvgGxByBinvgGx+GyB
17 10 13 14 16 syl3anc GGrpxByBinvgGx+GyB
18 17 ex GGrpxByBinvgGx+GyB
19 18 pm4.71d GGrpxByBxByBinvgGx+GyB
20 9 19 bitr4id GGrpxByBinvgGx+GyBxByB
21 ssid BB
22 1 11 15 3 eqgval GGrpBBxG~QGByxByBinvgGx+GyB
23 21 22 mpan2 GGrpxG~QGByxByBinvgGx+GyB
24 brxp xB×ByxByB
25 24 a1i GGrpxB×ByxByB
26 20 23 25 3bitr4d GGrpxG~QGByxB×By
27 6 8 26 eqbrrdv GGrpG~QGB=B×B