Metamath Proof Explorer


Theorem rabdif

Description: Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023)

Ref Expression
Assertion rabdif x A | φ B = x A B | φ

Proof

Step Hyp Ref Expression
1 indif2 x | φ A B = x | φ A B
2 dfrab2 x A B | φ = x | φ A B
3 dfrab2 x A | φ = x | φ A
4 3 difeq1i x A | φ B = x | φ A B
5 1 2 4 3eqtr4ri x A | φ B = x A B | φ