Metamath Proof Explorer


Theorem rabeqsnd

Description: Conditions for a restricted class abstraction to be a singleton, in deduction form. (Contributed by Thierry Arnoux, 2-Dec-2021)

Ref Expression
Hypotheses rabeqsnd.0 x=Bψχ
rabeqsnd.1 φBA
rabeqsnd.2 φχ
rabeqsnd.3 φxAψx=B
Assertion rabeqsnd φxA|ψ=B

Proof

Step Hyp Ref Expression
1 rabeqsnd.0 x=Bψχ
2 rabeqsnd.1 φBA
3 rabeqsnd.2 φχ
4 rabeqsnd.3 φxAψx=B
5 4 expl φxAψx=B
6 5 alrimiv φxxAψx=B
7 2 3 jca φBAχ
8 7 a1d φx=BBAχ
9 8 alrimiv φxx=BBAχ
10 eleq1 x=BxABA
11 10 1 anbi12d x=BxAψBAχ
12 11 pm5.74i x=BxAψx=BBAχ
13 12 albii xx=BxAψxx=BBAχ
14 9 13 sylibr φxx=BxAψ
15 6 14 jca φxxAψx=Bxx=BxAψ
16 albiim xxAψx=BxxAψx=Bxx=BxAψ
17 15 16 sylibr φxxAψx=B
18 rabeqsn xA|ψ=BxxAψx=B
19 17 18 sylibr φxA|ψ=B