Description: Conditions for a restricted class abstraction to be a singleton, in deduction form. (Contributed by Thierry Arnoux, 2-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rabeqsnd.0 | |
|
rabeqsnd.1 | |
||
rabeqsnd.2 | |
||
rabeqsnd.3 | |
||
Assertion | rabeqsnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqsnd.0 | |
|
2 | rabeqsnd.1 | |
|
3 | rabeqsnd.2 | |
|
4 | rabeqsnd.3 | |
|
5 | 4 | expl | |
6 | 5 | alrimiv | |
7 | 2 3 | jca | |
8 | 7 | a1d | |
9 | 8 | alrimiv | |
10 | eleq1 | |
|
11 | 10 1 | anbi12d | |
12 | 11 | pm5.74i | |
13 | 12 | albii | |
14 | 9 13 | sylibr | |
15 | 6 14 | jca | |
16 | albiim | |
|
17 | 15 16 | sylibr | |
18 | rabeqsn | |
|
19 | 17 18 | sylibr | |