Metamath Proof Explorer


Theorem ralnex3

Description: Relationship between three restricted universal and existential quantifiers. (Contributed by Thierry Arnoux, 12-Jul-2020) (Proof shortened by Wolf Lammen, 18-May-2023)

Ref Expression
Assertion ralnex3 xAyBzC¬φ¬xAyBzCφ

Proof

Step Hyp Ref Expression
1 ralnex zC¬φ¬zCφ
2 1 2ralbii xAyBzC¬φxAyB¬zCφ
3 ralnex2 xAyB¬zCφ¬xAyBzCφ
4 2 3 bitri xAyBzC¬φ¬xAyBzCφ