Metamath Proof Explorer


Theorem ralxp

Description: Universal quantification restricted to a Cartesian product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004) (Revised by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypothesis ralxp.1 x = y z φ ψ
Assertion ralxp x A × B φ y A z B ψ

Proof

Step Hyp Ref Expression
1 ralxp.1 x = y z φ ψ
2 iunxpconst y A y × B = A × B
3 2 raleqi x y A y × B φ x A × B φ
4 1 raliunxp x y A y × B φ y A z B ψ
5 3 4 bitr3i x A × B φ y A z B ψ