Metamath Proof Explorer


Theorem re0g

Description: The zero element of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion re0g 0=0fld

Proof

Step Hyp Ref Expression
1 cncrng fldCRing
2 crngring fldCRingfldRing
3 ringmnd fldRingfldMnd
4 1 2 3 mp2b fldMnd
5 0re 0
6 ax-resscn
7 df-refld fld=fld𝑠
8 cnfldbas =Basefld
9 cnfld0 0=0fld
10 7 8 9 ress0g fldMnd00=0fld
11 4 5 6 10 mp3an 0=0fld