Metamath Proof Explorer


Theorem reabsifnpos

Description: Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024)

Ref Expression
Assertion reabsifnpos AA=ifA0AA

Proof

Step Hyp Ref Expression
1 absnid AA0A=A
2 1 eqcomd AA0A=A
3 0re 0
4 ltnle 0A0<A¬A0
5 ltle 0A0<A0A
6 4 5 sylbird 0A¬A00A
7 3 6 mpan A¬A00A
8 7 imdistani A¬A0A0A
9 absid A0AA=A
10 8 9 syl A¬A0A=A
11 10 eqcomd A¬A0A=A
12 2 11 ifeqda AifA0AA=A
13 12 eqcomd AA=ifA0AA