Metamath Proof Explorer


Theorem reabsifpos

Description: Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024)

Ref Expression
Assertion reabsifpos AA=if0<AAA

Proof

Step Hyp Ref Expression
1 0re 0
2 ltle 0A0<A0A
3 1 2 mpan A0<A0A
4 3 imdistani A0<AA0A
5 absid A0AA=A
6 4 5 syl A0<AA=A
7 6 eqcomd A0<AA=A
8 id AA
9 0red A0
10 8 9 lenltd AA0¬0<A
11 10 pm5.32i AA0A¬0<A
12 absnid AA0A=A
13 11 12 sylbir A¬0<AA=A
14 13 eqcomd A¬0<AA=A
15 7 14 ifeqda Aif0<AAA=A
16 15 eqcomd AA=if0<AAA