Metamath Proof Explorer


Theorem recms

Description: The real numbers form a complete metric space. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion recms fldCMetSp

Proof

Step Hyp Ref Expression
1 eqid TopOpenfld=TopOpenfld
2 1 recld2 ClsdTopOpenfld
3 cncms fldCMetSp
4 ax-resscn
5 df-refld fld=fld𝑠
6 cnfldbas =Basefld
7 5 6 1 cmsss fldCMetSpfldCMetSpClsdTopOpenfld
8 3 4 7 mp2an fldCMetSpClsdTopOpenfld
9 2 8 mpbir fldCMetSp