Metamath Proof Explorer


Theorem recxpf1lem

Description: Complex exponentiation on positive real numbers is a one-to-one function. (Contributed by Thierry Arnoux, 1-Apr-2025)

Ref Expression
Hypotheses recxpf1.1 φA
recxpf1.2 φ0A
rexcpf1.3 φB
rexcpf1.4 φ0B
rexcpf1.5 φC+
Assertion recxpf1lem φA=BAC=BC

Proof

Step Hyp Ref Expression
1 recxpf1.1 φA
2 recxpf1.2 φ0A
3 rexcpf1.3 φB
4 rexcpf1.4 φ0B
5 rexcpf1.5 φC+
6 1 2 3 4 5 cxple2d φABACBC
7 3 4 1 2 5 cxple2d φBABCAC
8 6 7 anbi12d φABBAACBCBCAC
9 1 3 letri3d φA=BABBA
10 5 rpred φC
11 1 2 10 recxpcld φAC
12 3 4 10 recxpcld φBC
13 11 12 letri3d φAC=BCACBCBCAC
14 8 9 13 3bitr4d φA=BAC=BC