Metamath Proof Explorer


Theorem reexplog

Description: Exponentiation of a positive real number to an integer power. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion reexplog A+NAN=eNlogA

Proof

Step Hyp Ref Expression
1 relogcl A+logA
2 1 recnd A+logA
3 efexp logANeNlogA=elogAN
4 2 3 sylan A+NeNlogA=elogAN
5 reeflog A+elogA=A
6 5 oveq1d A+elogAN=AN
7 6 adantr A+NelogAN=AN
8 4 7 eqtr2d A+NAN=eNlogA