Metamath Proof Explorer


Theorem refld

Description: The real numbers form a field. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion refld fldField

Proof

Step Hyp Ref Expression
1 resubdrg SubRingfldfldDivRing
2 1 simpri fldDivRing
3 df-refld fld=fld𝑠
4 cncrng fldCRing
5 1 simpli SubRingfld
6 eqid fld𝑠=fld𝑠
7 6 subrgcrng fldCRingSubRingfldfld𝑠CRing
8 4 5 7 mp2an fld𝑠CRing
9 3 8 eqeltri fldCRing
10 isfld fldFieldfldDivRingfldCRing
11 2 9 10 mpbir2an fldField