Metamath Proof Explorer


Theorem refsymrels2

Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 ) can use the restricted version for their reflexive part (see below), not just the (I i^i ( dom r X. ran r ) ) C r version of dfrefrels2 , cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 20-Jul-2019)

Ref Expression
Assertion refsymrels2 RefRelsSymRels=rRels|Idomrrr-1r

Proof

Step Hyp Ref Expression
1 dfrefrels2 RefRels=rRels|Idomr×ranrr
2 dfsymrels2 SymRels=rRels|r-1r
3 1 2 ineq12i RefRelsSymRels=rRels|Idomr×ranrrrRels|r-1r
4 inrab rRels|Idomr×ranrrrRels|r-1r=rRels|Idomr×ranrrr-1r
5 symrefref2 r-1rIdomr×ranrrIdomrr
6 5 pm5.32ri Idomr×ranrrr-1rIdomrrr-1r
7 6 rabbii rRels|Idomr×ranrrr-1r=rRels|Idomrrr-1r
8 3 4 7 3eqtri RefRelsSymRels=rRels|Idomrrr-1r