Metamath Proof Explorer


Theorem rehalfge1

Description: Half of a real number greater than or equal to two is greater than or equal to one. (Contributed by AV, 2-Nov-2025)

Ref Expression
Assertion rehalfge1 X 2 +∞ 1 X 2

Proof

Step Hyp Ref Expression
1 2cn 2
2 1 mullidi 1 2 = 2
3 2re 2
4 3 rexri 2 *
5 4 a1i X 2 +∞ 2 *
6 pnfxr +∞ *
7 6 a1i X 2 +∞ +∞ *
8 id X 2 +∞ X 2 +∞
9 5 7 8 icogelbd X 2 +∞ 2 X
10 2 9 eqbrtrid X 2 +∞ 1 2 X
11 1red X 2 +∞ 1
12 0le2 0 2
13 0xr 0 *
14 13 a1i 0 2 0 *
15 6 a1i 0 2 +∞ *
16 id 0 2 0 2
17 14 15 16 icossico2d 0 2 2 +∞ 0 +∞
18 12 17 ax-mp 2 +∞ 0 +∞
19 rge0ssre 0 +∞
20 18 19 sstri 2 +∞
21 20 sseli X 2 +∞ X
22 2rp 2 +
23 22 a1i X 2 +∞ 2 +
24 11 21 23 lemuldivd X 2 +∞ 1 2 X 1 X 2
25 10 24 mpbid X 2 +∞ 1 X 2