Metamath Proof Explorer


Theorem relexpdmd

Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypothesis relexpdmd.1 φN0
Assertion relexpdmd φdomRrNR

Proof

Step Hyp Ref Expression
1 relexpdmd.1 φN0
2 relexpdm N0RVdomRrNR
3 1 2 sylan φRVdomRrNR
4 3 ex φRVdomRrNR
5 reldmrelexp Reldomr
6 5 ovprc1 ¬RVRrN=
7 6 dmeqd ¬RVdomRrN=dom
8 dm0 dom=
9 7 8 eqtrdi ¬RVdomRrN=
10 0ss R
11 9 10 eqsstrdi ¬RVdomRrNR
12 4 11 pm2.61d1 φdomRrNR