Metamath Proof Explorer


Theorem rellycmp

Description: The topology on the reals is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion rellycmp topGenran.N-Locally Comp

Proof

Step Hyp Ref Expression
1 eqid TopOpenfld=TopOpenfld
2 1 tgioo2 topGenran.=TopOpenfld𝑡
3 1 cnllycmp TopOpenfldN-Locally Comp
4 1 recld2 ClsdTopOpenfld
5 cldllycmp TopOpenfldN-Locally Comp ClsdTopOpenfld TopOpenfld𝑡N-Locally Comp
6 3 4 5 mp2an TopOpenfld𝑡N-Locally Comp
7 2 6 eqeltri topGenran.N-Locally Comp