Metamath Proof Explorer


Theorem relnonrel

Description: The non-relation part of a relation is empty. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion relnonrel Rel A A A -1 -1 =

Proof

Step Hyp Ref Expression
1 dfrel2 Rel A A -1 -1 = A
2 eqss A -1 -1 = A A -1 -1 A A A -1 -1
3 1 2 bitri Rel A A -1 -1 A A A -1 -1
4 cnvcnvss A -1 -1 A
5 4 biantrur A A -1 -1 A -1 -1 A A A -1 -1
6 ssdif0 A A -1 -1 A A -1 -1 =
7 3 5 6 3bitr2i Rel A A A -1 -1 =