Metamath Proof Explorer


Theorem relogbcld

Description: Closure of the general logarithm with a positive real base on positive reals, a deduction version. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses relogbcld.1 φB
relogbcld.2 φ0<B
relogbcld.3 φX
relogbcld.4 φ0<X
relogbcld.5 φB1
Assertion relogbcld φlogBX

Proof

Step Hyp Ref Expression
1 relogbcld.1 φB
2 relogbcld.2 φ0<B
3 relogbcld.3 φX
4 relogbcld.4 φ0<X
5 relogbcld.5 φB1
6 1 2 elrpd φB+
7 3 4 elrpd φX+
8 6 7 5 3jca φB+X+B1
9 relogbcl B+X+B1logBX
10 8 9 syl φlogBX