Metamath Proof Explorer


Theorem relogbzexpd

Description: Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power, a deduction version. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses relogbzexpd.1 φB+
relogbzexpd.2 φB1
relogbzexpd.3 φC+
relogbzexpd.4 φN
Assertion relogbzexpd φlogBCN=NlogBC

Proof

Step Hyp Ref Expression
1 relogbzexpd.1 φB+
2 relogbzexpd.2 φB1
3 relogbzexpd.3 φC+
4 relogbzexpd.4 φN
5 1 rpcnd φB
6 1 rpne0d φB0
7 6 2 nelprd φ¬B01
8 5 7 eldifd φB01
9 8 3 4 3jca φB01C+N
10 relogbzexp B01C+NlogBCN=NlogBC
11 9 10 syl φlogBCN=NlogBC