Metamath Proof Explorer


Theorem relogf1o

Description: The natural logarithm function maps the positive reals one-to-one onto the real numbers. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion relogf1o log+:+1-1 onto

Proof

Step Hyp Ref Expression
1 eff1o2 expranlog:ranlog1-1 onto0
2 dff1o3 expranlog:ranlog1-1 onto0expranlog:ranlogonto0Funexpranlog-1
3 2 simprbi expranlog:ranlog1-1 onto0Funexpranlog-1
4 1 3 ax-mp Funexpranlog-1
5 reeff1o exp:1-1 onto+
6 relogrn xxranlog
7 6 ssriv ranlog
8 resabs1 ranlogexpranlog=exp
9 f1oeq1 expranlog=expexpranlog:1-1 onto+exp:1-1 onto+
10 7 8 9 mp2b expranlog:1-1 onto+exp:1-1 onto+
11 5 10 mpbir expranlog:1-1 onto+
12 f1orescnv Funexpranlog-1expranlog:1-1 onto+expranlog-1+:+1-1 onto
13 4 11 12 mp2an expranlog-1+:+1-1 onto
14 dflog2 log=expranlog-1
15 reseq1 log=expranlog-1log+=expranlog-1+
16 f1oeq1 log+=expranlog-1+log+:+1-1 ontoexpranlog-1+:+1-1 onto
17 14 15 16 mp2b log+:+1-1 ontoexpranlog-1+:+1-1 onto
18 13 17 mpbir log+:+1-1 onto