Metamath Proof Explorer


Theorem relrelss

Description: Two ways to describe the structure of a two-place operation. (Contributed by NM, 17-Dec-2008)

Ref Expression
Assertion relrelss RelAReldomAAV×V×V

Proof

Step Hyp Ref Expression
1 df-rel ReldomAdomAV×V
2 1 anbi2i RelAReldomARelAdomAV×V
3 relssdmrn RelAAdomA×ranA
4 ssv ranAV
5 xpss12 domAV×VranAVdomA×ranAV×V×V
6 4 5 mpan2 domAV×VdomA×ranAV×V×V
7 3 6 sylan9ss RelAdomAV×VAV×V×V
8 xpss V×V×VV×V
9 sstr AV×V×VV×V×VV×VAV×V
10 8 9 mpan2 AV×V×VAV×V
11 df-rel RelAAV×V
12 10 11 sylibr AV×V×VRelA
13 dmss AV×V×VdomAdomV×V×V
14 vn0 V
15 dmxp VdomV×V×V=V×V
16 14 15 ax-mp domV×V×V=V×V
17 13 16 sseqtrdi AV×V×VdomAV×V
18 12 17 jca AV×V×VRelAdomAV×V
19 7 18 impbii RelAdomAV×VAV×V×V
20 2 19 bitri RelAReldomAAV×V×V