Metamath Proof Explorer


Theorem renegcli

Description: Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Hypothesis renegcl.1 A
Assertion renegcli A

Proof

Step Hyp Ref Expression
1 renegcl.1 A
2 ax-rnegex AxA+x=0
3 recn xx
4 df-neg A=0A
5 4 eqeq1i A=x0A=x
6 0cn 0
7 1 recni A
8 subadd 0Ax0A=xA+x=0
9 6 7 8 mp3an12 x0A=xA+x=0
10 5 9 bitrid xA=xA+x=0
11 3 10 syl xA=xA+x=0
12 eleq1a xA=xA
13 11 12 sylbird xA+x=0A
14 13 rexlimiv xA+x=0A
15 1 2 14 mp2b A