Metamath Proof Explorer


Theorem repsf

Description: The constructed function mapping a half-open range of nonnegative integers to a constant is a function. (Contributed by AV, 4-Nov-2018)

Ref Expression
Assertion repsf SVN0SrepeatSN:0..^NV

Proof

Step Hyp Ref Expression
1 simpl SVx0..^NSV
2 1 ralrimiva SVx0..^NSV
3 2 adantr SVN0x0..^NSV
4 eqid x0..^NS=x0..^NS
5 4 fmpt x0..^NSVx0..^NS:0..^NV
6 3 5 sylib SVN0x0..^NS:0..^NV
7 reps SVN0SrepeatSN=x0..^NS
8 7 feq1d SVN0SrepeatSN:0..^NVx0..^NS:0..^NV
9 6 8 mpbird SVN0SrepeatSN:0..^NV