Metamath Proof Explorer


Theorem repsw3

Description: The "repeated symbol word" of length three. (Contributed by AV, 6-Nov-2018)

Ref Expression
Assertion repsw3 SVSrepeatS3=⟨“SSS”⟩

Proof

Step Hyp Ref Expression
1 df-s3 ⟨“SSS”⟩=⟨“SS”⟩++⟨“S”⟩
2 2nn0 20
3 1nn0 10
4 repswccat SV2010SrepeatS2++SrepeatS1=SrepeatS2+1
5 2 3 4 mp3an23 SVSrepeatS2++SrepeatS1=SrepeatS2+1
6 repsw2 SVSrepeatS2=⟨“SS”⟩
7 repsw1 SVSrepeatS1=⟨“S”⟩
8 6 7 oveq12d SVSrepeatS2++SrepeatS1=⟨“SS”⟩++⟨“S”⟩
9 2p1e3 2+1=3
10 9 a1i SV2+1=3
11 10 oveq2d SVSrepeatS2+1=SrepeatS3
12 5 8 11 3eqtr3d SV⟨“SS”⟩++⟨“S”⟩=SrepeatS3
13 1 12 eqtr2id SVSrepeatS3=⟨“SSS”⟩