Metamath Proof Explorer


Theorem rereb

Description: A number is real iff it equals its real part. Proposition 10-3.4(f) of Gleason p. 133. (Contributed by NM, 20-Aug-2008)

Ref Expression
Assertion rereb AAA=A

Proof

Step Hyp Ref Expression
1 replim AA=A+iA
2 1 adantr AAA=A+iA
3 reim0 AA=0
4 3 oveq2d AiA=i0
5 it0e0 i0=0
6 4 5 eqtrdi AiA=0
7 6 adantl AAiA=0
8 7 oveq2d AAA+iA=A+0
9 recl AA
10 9 recnd AA
11 10 addridd AA+0=A
12 11 adantr AAA+0=A
13 2 8 12 3eqtrrd AAA=A
14 simpr AA=AA=A
15 9 adantr AA=AA
16 14 15 eqeltrrd AA=AA
17 13 16 impbida AAA=A