| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							replim | 
							 |-  ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( A e. CC /\ A e. RR ) -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							reim0 | 
							 |-  ( A e. RR -> ( Im ` A ) = 0 )  | 
						
						
							| 4 | 
							
								3
							 | 
							oveq2d | 
							 |-  ( A e. RR -> ( _i x. ( Im ` A ) ) = ( _i x. 0 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							it0e0 | 
							 |-  ( _i x. 0 ) = 0  | 
						
						
							| 6 | 
							
								4 5
							 | 
							eqtrdi | 
							 |-  ( A e. RR -> ( _i x. ( Im ` A ) ) = 0 )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantl | 
							 |-  ( ( A e. CC /\ A e. RR ) -> ( _i x. ( Im ` A ) ) = 0 )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq2d | 
							 |-  ( ( A e. CC /\ A e. RR ) -> ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) = ( ( Re ` A ) + 0 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							recl | 
							 |-  ( A e. CC -> ( Re ` A ) e. RR )  | 
						
						
							| 10 | 
							
								9
							 | 
							recnd | 
							 |-  ( A e. CC -> ( Re ` A ) e. CC )  | 
						
						
							| 11 | 
							
								10
							 | 
							addridd | 
							 |-  ( A e. CC -> ( ( Re ` A ) + 0 ) = ( Re ` A ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( A e. CC /\ A e. RR ) -> ( ( Re ` A ) + 0 ) = ( Re ` A ) )  | 
						
						
							| 13 | 
							
								2 8 12
							 | 
							3eqtrrd | 
							 |-  ( ( A e. CC /\ A e. RR ) -> ( Re ` A ) = A )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							 |-  ( ( A e. CC /\ ( Re ` A ) = A ) -> ( Re ` A ) = A )  | 
						
						
							| 15 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( A e. CC /\ ( Re ` A ) = A ) -> ( Re ` A ) e. RR )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqeltrrd | 
							 |-  ( ( A e. CC /\ ( Re ` A ) = A ) -> A e. RR )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							impbida | 
							 |-  ( A e. CC -> ( A e. RR <-> ( Re ` A ) = A ) )  |