Metamath Proof Explorer


Theorem residpr

Description: Restriction of the identity to a pair. (Contributed by AV, 11-Dec-2018)

Ref Expression
Assertion residpr AVBWIAB=AABB

Proof

Step Hyp Ref Expression
1 df-pr AB=AB
2 1 reseq2i IAB=IAB
3 resundi IAB=IAIB
4 2 3 eqtri IAB=IAIB
5 xpsng AVAVA×A=AA
6 5 anidms AVA×A=AA
7 6 adantr AVBWA×A=AA
8 xpsng BWBWB×B=BB
9 8 anidms BWB×B=BB
10 9 adantl AVBWB×B=BB
11 7 10 uneq12d AVBWA×AB×B=AABB
12 restidsing IA=A×A
13 restidsing IB=B×B
14 12 13 uneq12i IAIB=A×AB×B
15 df-pr AABB=AABB
16 11 14 15 3eqtr4g AVBWIAIB=AABB
17 4 16 eqtrid AVBWIAB=AABB