Metamath Proof Explorer


Theorem resisoeq45d

Description: Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025)

Ref Expression
Hypotheses resisoeq45.4 φA=C
resisoeq45.5 φB=D
Assertion resisoeq45d φFAIsomR,SABFCIsomR,SCD

Proof

Step Hyp Ref Expression
1 resisoeq45.4 φA=C
2 resisoeq45.5 φB=D
3 1 reseq2d φFA=FC
4 3 1 2 isoeq145d φFAIsomR,SABFCIsomR,SCD