Metamath Proof Explorer


Theorem resnonrel

Description: A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion resnonrel A A -1 -1 B =

Proof

Step Hyp Ref Expression
1 ssv B V
2 ssres2 B V A A -1 -1 B A A -1 -1 V
3 1 2 ax-mp A A -1 -1 B A A -1 -1 V
4 cnvnonrel A A -1 -1 -1 =
5 4 cnveqi A A -1 -1 -1 -1 = -1
6 cnvcnv2 A A -1 -1 -1 -1 = A A -1 -1 V
7 cnv0 -1 =
8 5 6 7 3eqtr3i A A -1 -1 V =
9 3 8 sseqtri A A -1 -1 B
10 ss0b A A -1 -1 B A A -1 -1 B =
11 9 10 mpbi A A -1 -1 B =