Metamath Proof Explorer


Theorem resnonrel

Description: A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion resnonrel AA-1-1B=

Proof

Step Hyp Ref Expression
1 ssv BV
2 ssres2 BVAA-1-1BAA-1-1V
3 1 2 ax-mp AA-1-1BAA-1-1V
4 cnvnonrel AA-1-1-1=
5 4 cnveqi AA-1-1-1-1=-1
6 cnvcnv2 AA-1-1-1-1=AA-1-1V
7 cnv0 -1=
8 5 6 7 3eqtr3i AA-1-1V=
9 3 8 sseqtri AA-1-1B
10 ss0b AA-1-1BAA-1-1B=
11 9 10 mpbi AA-1-1B=