Metamath Proof Explorer


Theorem ressabs

Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Assertion ressabs AXBAW𝑠A𝑠B=W𝑠B

Proof

Step Hyp Ref Expression
1 ssexg BAAXBV
2 1 ancoms AXBABV
3 ressress AXBVW𝑠A𝑠B=W𝑠AB
4 2 3 syldan AXBAW𝑠A𝑠B=W𝑠AB
5 simpr AXBABA
6 sseqin2 BAAB=B
7 5 6 sylib AXBAAB=B
8 7 oveq2d AXBAW𝑠AB=W𝑠B
9 4 8 eqtrd AXBAW𝑠A𝑠B=W𝑠B