Metamath Proof Explorer


Theorem wunress

Description: Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 28-Oct-2024)

Ref Expression
Hypotheses wunress.1 φ U WUni
wunress.2 φ ω U
wunress.3 φ W U
Assertion wunress φ W 𝑠 A U

Proof

Step Hyp Ref Expression
1 wunress.1 φ U WUni
2 wunress.2 φ ω U
3 wunress.3 φ W U
4 eqid W 𝑠 A = W 𝑠 A
5 eqid Base W = Base W
6 4 5 ressval W U A V W 𝑠 A = if Base W A W W sSet Base ndx A Base W
7 3 6 sylan φ A V W 𝑠 A = if Base W A W W sSet Base ndx A Base W
8 1 2 basndxelwund φ Base ndx U
9 incom A Base W = Base W A
10 baseid Base = Slot Base ndx
11 10 1 3 wunstr φ Base W U
12 1 11 wunin φ Base W A U
13 9 12 eqeltrid φ A Base W U
14 1 8 13 wunop φ Base ndx A Base W U
15 1 3 14 wunsets φ W sSet Base ndx A Base W U
16 3 15 ifcld φ if Base W A W W sSet Base ndx A Base W U
17 16 adantr φ A V if Base W A W W sSet Base ndx A Base W U
18 7 17 eqeltrd φ A V W 𝑠 A U
19 18 ex φ A V W 𝑠 A U
20 1 wun0 φ U
21 reldmress Rel dom 𝑠
22 21 ovprc2 ¬ A V W 𝑠 A =
23 22 eleq1d ¬ A V W 𝑠 A U U
24 20 23 syl5ibrcom φ ¬ A V W 𝑠 A U
25 19 24 pm2.61d φ W 𝑠 A U