Step |
Hyp |
Ref |
Expression |
1 |
|
wunress.1 |
|- ( ph -> U e. WUni ) |
2 |
|
wunress.2 |
|- ( ph -> _om e. U ) |
3 |
|
wunress.3 |
|- ( ph -> W e. U ) |
4 |
|
eqid |
|- ( W |`s A ) = ( W |`s A ) |
5 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
6 |
4 5
|
ressval |
|- ( ( W e. U /\ A e. _V ) -> ( W |`s A ) = if ( ( Base ` W ) C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) ) |
7 |
3 6
|
sylan |
|- ( ( ph /\ A e. _V ) -> ( W |`s A ) = if ( ( Base ` W ) C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) ) |
8 |
1 2
|
basndxelwund |
|- ( ph -> ( Base ` ndx ) e. U ) |
9 |
|
incom |
|- ( A i^i ( Base ` W ) ) = ( ( Base ` W ) i^i A ) |
10 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
11 |
10 1 3
|
wunstr |
|- ( ph -> ( Base ` W ) e. U ) |
12 |
1 11
|
wunin |
|- ( ph -> ( ( Base ` W ) i^i A ) e. U ) |
13 |
9 12
|
eqeltrid |
|- ( ph -> ( A i^i ( Base ` W ) ) e. U ) |
14 |
1 8 13
|
wunop |
|- ( ph -> <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. e. U ) |
15 |
1 3 14
|
wunsets |
|- ( ph -> ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) e. U ) |
16 |
3 15
|
ifcld |
|- ( ph -> if ( ( Base ` W ) C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) e. U ) |
17 |
16
|
adantr |
|- ( ( ph /\ A e. _V ) -> if ( ( Base ` W ) C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) e. U ) |
18 |
7 17
|
eqeltrd |
|- ( ( ph /\ A e. _V ) -> ( W |`s A ) e. U ) |
19 |
18
|
ex |
|- ( ph -> ( A e. _V -> ( W |`s A ) e. U ) ) |
20 |
1
|
wun0 |
|- ( ph -> (/) e. U ) |
21 |
|
reldmress |
|- Rel dom |`s |
22 |
21
|
ovprc2 |
|- ( -. A e. _V -> ( W |`s A ) = (/) ) |
23 |
22
|
eleq1d |
|- ( -. A e. _V -> ( ( W |`s A ) e. U <-> (/) e. U ) ) |
24 |
20 23
|
syl5ibrcom |
|- ( ph -> ( -. A e. _V -> ( W |`s A ) e. U ) ) |
25 |
19 24
|
pm2.61d |
|- ( ph -> ( W |`s A ) e. U ) |