Step |
Hyp |
Ref |
Expression |
1 |
|
wunress.1 |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
2 |
|
wunress.2 |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
3 |
|
wunress.3 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑈 ) |
4 |
|
eqid |
⊢ ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s 𝐴 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
6 |
4 5
|
ressval |
⊢ ( ( 𝑊 ∈ 𝑈 ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) ) |
7 |
3 6
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) = if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) ) |
8 |
1 2
|
basndxelwund |
⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ 𝑈 ) |
9 |
|
incom |
⊢ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) |
10 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
11 |
10 1 3
|
wunstr |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) ∈ 𝑈 ) |
12 |
1 11
|
wunin |
⊢ ( 𝜑 → ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) ∈ 𝑈 ) |
13 |
9 12
|
eqeltrid |
⊢ ( 𝜑 → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∈ 𝑈 ) |
14 |
1 8 13
|
wunop |
⊢ ( 𝜑 → 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ∈ 𝑈 ) |
15 |
1 3 14
|
wunsets |
⊢ ( 𝜑 → ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ∈ 𝑈 ) |
16 |
3 15
|
ifcld |
⊢ ( 𝜑 → if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) ∈ 𝑈 ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) ∈ 𝑈 ) |
18 |
7 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ V ) → ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ) |
19 |
18
|
ex |
⊢ ( 𝜑 → ( 𝐴 ∈ V → ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ) ) |
20 |
1
|
wun0 |
⊢ ( 𝜑 → ∅ ∈ 𝑈 ) |
21 |
|
reldmress |
⊢ Rel dom ↾s |
22 |
21
|
ovprc2 |
⊢ ( ¬ 𝐴 ∈ V → ( 𝑊 ↾s 𝐴 ) = ∅ ) |
23 |
22
|
eleq1d |
⊢ ( ¬ 𝐴 ∈ V → ( ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ↔ ∅ ∈ 𝑈 ) ) |
24 |
20 23
|
syl5ibrcom |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ V → ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ) ) |
25 |
19 24
|
pm2.61d |
⊢ ( 𝜑 → ( 𝑊 ↾s 𝐴 ) ∈ 𝑈 ) |