Metamath Proof Explorer


Theorem wunress

Description: Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 28-Oct-2024)

Ref Expression
Hypotheses wunress.1 ( 𝜑𝑈 ∈ WUni )
wunress.2 ( 𝜑 → ω ∈ 𝑈 )
wunress.3 ( 𝜑𝑊𝑈 )
Assertion wunress ( 𝜑 → ( 𝑊s 𝐴 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 wunress.1 ( 𝜑𝑈 ∈ WUni )
2 wunress.2 ( 𝜑 → ω ∈ 𝑈 )
3 wunress.3 ( 𝜑𝑊𝑈 )
4 eqid ( 𝑊s 𝐴 ) = ( 𝑊s 𝐴 )
5 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
6 4 5 ressval ( ( 𝑊𝑈𝐴 ∈ V ) → ( 𝑊s 𝐴 ) = if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) ) )
7 3 6 sylan ( ( 𝜑𝐴 ∈ V ) → ( 𝑊s 𝐴 ) = if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) ) )
8 1 2 basndxelwund ( 𝜑 → ( Base ‘ ndx ) ∈ 𝑈 )
9 incom ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( ( Base ‘ 𝑊 ) ∩ 𝐴 )
10 baseid Base = Slot ( Base ‘ ndx )
11 10 1 3 wunstr ( 𝜑 → ( Base ‘ 𝑊 ) ∈ 𝑈 )
12 1 11 wunin ( 𝜑 → ( ( Base ‘ 𝑊 ) ∩ 𝐴 ) ∈ 𝑈 )
13 9 12 eqeltrid ( 𝜑 → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∈ 𝑈 )
14 1 8 13 wunop ( 𝜑 → ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ∈ 𝑈 )
15 1 3 14 wunsets ( 𝜑 → ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) ∈ 𝑈 )
16 3 15 ifcld ( 𝜑 → if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) ) ∈ 𝑈 )
17 16 adantr ( ( 𝜑𝐴 ∈ V ) → if ( ( Base ‘ 𝑊 ) ⊆ 𝐴 , 𝑊 , ( 𝑊 sSet ⟨ ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⟩ ) ) ∈ 𝑈 )
18 7 17 eqeltrd ( ( 𝜑𝐴 ∈ V ) → ( 𝑊s 𝐴 ) ∈ 𝑈 )
19 18 ex ( 𝜑 → ( 𝐴 ∈ V → ( 𝑊s 𝐴 ) ∈ 𝑈 ) )
20 1 wun0 ( 𝜑 → ∅ ∈ 𝑈 )
21 reldmress Rel dom ↾s
22 21 ovprc2 ( ¬ 𝐴 ∈ V → ( 𝑊s 𝐴 ) = ∅ )
23 22 eleq1d ( ¬ 𝐴 ∈ V → ( ( 𝑊s 𝐴 ) ∈ 𝑈 ↔ ∅ ∈ 𝑈 ) )
24 20 23 syl5ibrcom ( 𝜑 → ( ¬ 𝐴 ∈ V → ( 𝑊s 𝐴 ) ∈ 𝑈 ) )
25 19 24 pm2.61d ( 𝜑 → ( 𝑊s 𝐴 ) ∈ 𝑈 )