Metamath Proof Explorer


Theorem ressbasssg

Description: The base set of a restriction to A is a subset of A and the base set B of the original structure. (Contributed by SN, 10-Jan-2025)

Ref Expression
Hypotheses ressbas.r R=W𝑠A
ressbas.b B=BaseW
Assertion ressbasssg BaseRAB

Proof

Step Hyp Ref Expression
1 ressbas.r R=W𝑠A
2 ressbas.b B=BaseW
3 1 2 ressbas AVAB=BaseR
4 ssid ABAB
5 3 4 eqsstrrdi AVBaseRAB
6 reldmress Reldom𝑠
7 6 ovprc2 ¬AVW𝑠A=
8 1 7 eqtrid ¬AVR=
9 8 fveq2d ¬AVBaseR=Base
10 base0 =Base
11 0ss AB
12 10 11 eqsstrri BaseAB
13 9 12 eqsstrdi ¬AVBaseRAB
14 5 13 pm2.61i BaseRAB