Metamath Proof Explorer


Theorem ressmplbas

Description: A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses ressmpl.s S=ImPolyR
ressmpl.h H=R𝑠T
ressmpl.u U=ImPolyH
ressmpl.b B=BaseU
ressmpl.1 φIV
ressmpl.2 φTSubRingR
ressmpl.p P=S𝑠B
Assertion ressmplbas φB=BaseP

Proof

Step Hyp Ref Expression
1 ressmpl.s S=ImPolyR
2 ressmpl.h H=R𝑠T
3 ressmpl.u U=ImPolyH
4 ressmpl.b B=BaseU
5 ressmpl.1 φIV
6 ressmpl.2 φTSubRingR
7 ressmpl.p P=S𝑠B
8 eqid ImPwSerH=ImPwSerH
9 eqid BaseImPwSerH=BaseImPwSerH
10 eqid BaseS=BaseS
11 1 2 3 4 5 6 8 9 10 ressmplbas2 φB=BaseImPwSerHBaseS
12 inss2 BaseImPwSerHBaseSBaseS
13 11 12 eqsstrdi φBBaseS
14 7 10 ressbas2 BBaseSB=BaseP
15 13 14 syl φB=BaseP