Metamath Proof Explorer


Theorem ressmplvsca

Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses ressmpl.s S=ImPolyR
ressmpl.h H=R𝑠T
ressmpl.u U=ImPolyH
ressmpl.b B=BaseU
ressmpl.1 φIV
ressmpl.2 φTSubRingR
ressmpl.p P=S𝑠B
Assertion ressmplvsca φXTYBXUY=XPY

Proof

Step Hyp Ref Expression
1 ressmpl.s S=ImPolyR
2 ressmpl.h H=R𝑠T
3 ressmpl.u U=ImPolyH
4 ressmpl.b B=BaseU
5 ressmpl.1 φIV
6 ressmpl.2 φTSubRingR
7 ressmpl.p P=S𝑠B
8 eqid ImPwSerH=ImPwSerH
9 eqid BaseImPwSerH=BaseImPwSerH
10 3 8 4 9 mplbasss BBaseImPwSerH
11 10 sseli YBYBaseImPwSerH
12 eqid ImPwSerR=ImPwSerR
13 eqid ImPwSerR𝑠BaseImPwSerH=ImPwSerR𝑠BaseImPwSerH
14 12 2 8 9 13 6 resspsrvsca φXTYBaseImPwSerHXImPwSerHY=XImPwSerR𝑠BaseImPwSerHY
15 11 14 sylanr2 φXTYBXImPwSerHY=XImPwSerR𝑠BaseImPwSerHY
16 4 fvexi BV
17 3 8 4 mplval2 U=ImPwSerH𝑠B
18 eqid ImPwSerH=ImPwSerH
19 17 18 ressvsca BVImPwSerH=U
20 16 19 ax-mp ImPwSerH=U
21 20 oveqi XImPwSerHY=XUY
22 fvex BaseSV
23 eqid BaseS=BaseS
24 1 12 23 mplval2 S=ImPwSerR𝑠BaseS
25 eqid ImPwSerR=ImPwSerR
26 24 25 ressvsca BaseSVImPwSerR=S
27 22 26 ax-mp ImPwSerR=S
28 fvex BaseImPwSerHV
29 13 25 ressvsca BaseImPwSerHVImPwSerR=ImPwSerR𝑠BaseImPwSerH
30 28 29 ax-mp ImPwSerR=ImPwSerR𝑠BaseImPwSerH
31 eqid S=S
32 7 31 ressvsca BVS=P
33 16 32 ax-mp S=P
34 27 30 33 3eqtr3i ImPwSerR𝑠BaseImPwSerH=P
35 34 oveqi XImPwSerR𝑠BaseImPwSerHY=XPY
36 15 21 35 3eqtr3g φXTYBXUY=XPY