Metamath Proof Explorer


Theorem ressnm

Description: The norm in a restricted structure. (Contributed by Thierry Arnoux, 8-Oct-2017)

Ref Expression
Hypotheses ressnm.1 H = G 𝑠 A
ressnm.2 B = Base G
ressnm.3 0 ˙ = 0 G
ressnm.4 N = norm G
Assertion ressnm G Mnd 0 ˙ A A B N A = norm H

Proof

Step Hyp Ref Expression
1 ressnm.1 H = G 𝑠 A
2 ressnm.2 B = Base G
3 ressnm.3 0 ˙ = 0 G
4 ressnm.4 N = norm G
5 1 2 ressbas2 A B A = Base H
6 5 3ad2ant3 G Mnd 0 ˙ A A B A = Base H
7 2 fvexi B V
8 7 ssex A B A V
9 eqid dist G = dist G
10 1 9 ressds A V dist G = dist H
11 8 10 syl A B dist G = dist H
12 11 3ad2ant3 G Mnd 0 ˙ A A B dist G = dist H
13 eqidd G Mnd 0 ˙ A A B x = x
14 1 2 3 ress0g G Mnd 0 ˙ A A B 0 ˙ = 0 H
15 12 13 14 oveq123d G Mnd 0 ˙ A A B x dist G 0 ˙ = x dist H 0 H
16 6 15 mpteq12dv G Mnd 0 ˙ A A B x A x dist G 0 ˙ = x Base H x dist H 0 H
17 4 2 3 9 nmfval N = x B x dist G 0 ˙
18 17 reseq1i N A = x B x dist G 0 ˙ A
19 resmpt A B x B x dist G 0 ˙ A = x A x dist G 0 ˙
20 18 19 syl5eq A B N A = x A x dist G 0 ˙
21 20 3ad2ant3 G Mnd 0 ˙ A A B N A = x A x dist G 0 ˙
22 eqid norm H = norm H
23 eqid Base H = Base H
24 eqid 0 H = 0 H
25 eqid dist H = dist H
26 22 23 24 25 nmfval norm H = x Base H x dist H 0 H
27 26 a1i G Mnd 0 ˙ A A B norm H = x Base H x dist H 0 H
28 16 21 27 3eqtr4d G Mnd 0 ˙ A A B N A = norm H