Metamath Proof Explorer


Theorem ressplusf

Description: The group operation function +f of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017)

Ref Expression
Hypotheses ressplusf.1 B=BaseG
ressplusf.2 H=G𝑠A
ressplusf.3 ˙=+G
ressplusf.4 ˙FnB×B
ressplusf.5 AB
Assertion ressplusf +𝑓H=˙A×A

Proof

Step Hyp Ref Expression
1 ressplusf.1 B=BaseG
2 ressplusf.2 H=G𝑠A
3 ressplusf.3 ˙=+G
4 ressplusf.4 ˙FnB×B
5 ressplusf.5 AB
6 resmpo ABABxB,yBx˙yA×A=xA,yAx˙y
7 5 5 6 mp2an xB,yBx˙yA×A=xA,yAx˙y
8 fnov ˙FnB×B˙=xB,yBx˙y
9 4 8 mpbi ˙=xB,yBx˙y
10 9 reseq1i ˙A×A=xB,yBx˙yA×A
11 2 1 ressbas2 ABA=BaseH
12 5 11 ax-mp A=BaseH
13 1 fvexi BV
14 13 5 ssexi AV
15 eqid +G=+G
16 2 15 ressplusg AV+G=+H
17 14 16 ax-mp +G=+H
18 3 17 eqtri ˙=+H
19 eqid +𝑓H=+𝑓H
20 12 18 19 plusffval +𝑓H=xA,yAx˙y
21 7 10 20 3eqtr4ri +𝑓H=˙A×A