Metamath Proof Explorer


Theorem ressply1bas

Description: A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses ressply1.s S=Poly1R
ressply1.h H=R𝑠T
ressply1.u U=Poly1H
ressply1.b B=BaseU
ressply1.2 φTSubRingR
ressply1.p P=S𝑠B
Assertion ressply1bas φB=BaseP

Proof

Step Hyp Ref Expression
1 ressply1.s S=Poly1R
2 ressply1.h H=R𝑠T
3 ressply1.u U=Poly1H
4 ressply1.b B=BaseU
5 ressply1.2 φTSubRingR
6 ressply1.p P=S𝑠B
7 eqid PwSer1H=PwSer1H
8 eqid BasePwSer1H=BasePwSer1H
9 eqid BaseS=BaseS
10 1 2 3 4 5 7 8 9 ressply1bas2 φB=BasePwSer1HBaseS
11 inss2 BasePwSer1HBaseSBaseS
12 10 11 eqsstrdi φBBaseS
13 6 9 ressbas2 BBaseSB=BaseP
14 12 13 syl φB=BaseP