Metamath Proof Explorer


Theorem resttop

Description: A subspace topology is a topology. Definition of subspace topology in Munkres p. 89. A is normally a subset of the base set of J . (Contributed by FL, 15-Apr-2007) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion resttop JTopAVJ𝑡ATop

Proof

Step Hyp Ref Expression
1 tgrest JTopAVtopGenJ𝑡A=topGenJ𝑡A
2 tgtop JToptopGenJ=J
3 2 adantr JTopAVtopGenJ=J
4 3 oveq1d JTopAVtopGenJ𝑡A=J𝑡A
5 1 4 eqtrd JTopAVtopGenJ𝑡A=J𝑡A
6 topbas JTopJTopBases
7 6 adantr JTopAVJTopBases
8 restbas JTopBasesJ𝑡ATopBases
9 tgcl J𝑡ATopBasestopGenJ𝑡ATop
10 7 8 9 3syl JTopAVtopGenJ𝑡ATop
11 5 10 eqeltrrd JTopAVJ𝑡ATop