Metamath Proof Explorer


Theorem resubdrg

Description: The real numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014) (Revised by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Assertion resubdrg SubRingfldfldDivRing

Proof

Step Hyp Ref Expression
1 recn xx
2 readdcl xyx+y
3 renegcl xx
4 1re 1
5 remulcl xyxy
6 rereccl xx01x
7 1 2 3 4 5 6 cnsubdrglem SubRingfldfld𝑠DivRing
8 df-refld fld=fld𝑠
9 8 eleq1i fldDivRingfld𝑠DivRing
10 9 anbi2i SubRingfldfldDivRingSubRingfldfld𝑠DivRing
11 7 10 mpbir SubRingfldfldDivRing