| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resubidaddridlem.a |
|
| 2 |
|
resubidaddridlem.b |
|
| 3 |
|
resubidaddridlem.c |
|
| 4 |
|
resubidaddridlem.1 |
|
| 5 |
|
rersubcl |
|
| 6 |
1 2 5
|
syl2anc |
|
| 7 |
|
rersubcl |
|
| 8 |
2 3 7
|
syl2anc |
|
| 9 |
6 8
|
readdcld |
|
| 10 |
4
|
eqcomd |
|
| 11 |
2 3 6
|
resubaddd |
|
| 12 |
10 11
|
mpbid |
|
| 13 |
12
|
oveq1d |
|
| 14 |
3
|
recnd |
|
| 15 |
6
|
recnd |
|
| 16 |
8
|
recnd |
|
| 17 |
14 15 16
|
addassd |
|
| 18 |
1 2 8
|
resubaddd |
|
| 19 |
4 18
|
mpbid |
|
| 20 |
13 17 19
|
3eqtr3d |
|
| 21 |
3 9 20
|
reladdrsub |
|