| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resubidaddridlem.a |  | 
						
							| 2 |  | resubidaddridlem.b |  | 
						
							| 3 |  | resubidaddridlem.c |  | 
						
							| 4 |  | resubidaddridlem.1 |  | 
						
							| 5 |  | rersubcl |  | 
						
							| 6 | 1 2 5 | syl2anc |  | 
						
							| 7 |  | rersubcl |  | 
						
							| 8 | 2 3 7 | syl2anc |  | 
						
							| 9 | 6 8 | readdcld |  | 
						
							| 10 | 4 | eqcomd |  | 
						
							| 11 | 2 3 6 | resubaddd |  | 
						
							| 12 | 10 11 | mpbid |  | 
						
							| 13 | 12 | oveq1d |  | 
						
							| 14 | 3 | recnd |  | 
						
							| 15 | 6 | recnd |  | 
						
							| 16 | 8 | recnd |  | 
						
							| 17 | 14 15 16 | addassd |  | 
						
							| 18 | 1 2 8 | resubaddd |  | 
						
							| 19 | 4 18 | mpbid |  | 
						
							| 20 | 13 17 19 | 3eqtr3d |  | 
						
							| 21 | 3 9 20 | reladdrsub |  |