Description: There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 1-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reu3op.a | |
|
Assertion | reu3op | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reu3op.a | |
|
2 | reu3 | |
|
3 | 1 | rexxp | |
4 | eqeq2 | |
|
5 | 4 | imbi2d | |
6 | 5 | ralbidv | |
7 | 6 | rexxp | |
8 | eqeq1 | |
|
9 | 1 8 | imbi12d | |
10 | 9 | ralxp | |
11 | eqcom | |
|
12 | 11 | a1i | |
13 | 12 | imbi2d | |
14 | 13 | 2ralbidva | |
15 | 10 14 | bitrid | |
16 | 15 | 2rexbiia | |
17 | 7 16 | bitri | |
18 | 3 17 | anbi12i | |
19 | 2 18 | bitri | |