Metamath Proof Explorer


Theorem reu3op

Description: There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 1-Jul-2023)

Ref Expression
Hypothesis reu3op.a p=abψχ
Assertion reu3op ∃!pX×YψaXbYχxXyYaXbYχxy=ab

Proof

Step Hyp Ref Expression
1 reu3op.a p=abψχ
2 reu3 ∃!pX×YψpX×YψqX×YpX×Yψp=q
3 1 rexxp pX×YψaXbYχ
4 eqeq2 q=xyp=qp=xy
5 4 imbi2d q=xyψp=qψp=xy
6 5 ralbidv q=xypX×Yψp=qpX×Yψp=xy
7 6 rexxp qX×YpX×Yψp=qxXyYpX×Yψp=xy
8 eqeq1 p=abp=xyab=xy
9 1 8 imbi12d p=abψp=xyχab=xy
10 9 ralxp pX×Yψp=xyaXbYχab=xy
11 eqcom ab=xyxy=ab
12 11 a1i xXyYaXbYab=xyxy=ab
13 12 imbi2d xXyYaXbYχab=xyχxy=ab
14 13 2ralbidva xXyYaXbYχab=xyaXbYχxy=ab
15 10 14 bitrid xXyYpX×Yψp=xyaXbYχxy=ab
16 15 2rexbiia xXyYpX×Yψp=xyxXyYaXbYχxy=ab
17 7 16 bitri qX×YpX×Yψp=qxXyYaXbYχxy=ab
18 3 17 anbi12i pX×YψqX×YpX×Yψp=qaXbYχxXyYaXbYχxy=ab
19 2 18 bitri ∃!pX×YψaXbYχxXyYaXbYχxy=ab