Metamath Proof Explorer


Theorem reuabaiotaiota

Description: The iota and the alternate iota over a wff ph are equal iff there is a unique satisfying value of { x | ph } = { y } . (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion reuabaiotaiota ∃! y x | φ = y ι x | φ = ι

Proof

Step Hyp Ref Expression
1 uniintab ∃! y x | φ = y y | x | φ = y = y | x | φ = y
2 df-iota ι x | φ = y | x | φ = y
3 df-aiota ι = y | x | φ = y
4 2 3 eqeq12i ι x | φ = ι y | x | φ = y = y | x | φ = y
5 1 4 bitr4i ∃! y x | φ = y ι x | φ = ι