Metamath Proof Explorer


Theorem reuxfrd

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . (Contributed by NM, 16-Jan-2012) Separate variables B and C . (Revised by Thierry Arnoux, 8-Oct-2017)

Ref Expression
Hypotheses reuxfrd.1 φyCAB
reuxfrd.2 φxB*yCx=A
Assertion reuxfrd φ∃!xByCx=Aψ∃!yCψ

Proof

Step Hyp Ref Expression
1 reuxfrd.1 φyCAB
2 reuxfrd.2 φxB*yCx=A
3 rmoan *yCx=A*yCψx=A
4 2 3 syl φxB*yCψx=A
5 ancom ψx=Ax=Aψ
6 5 rmobii *yCψx=A*yCx=Aψ
7 4 6 sylib φxB*yCx=Aψ
8 7 ralrimiva φxB*yCx=Aψ
9 2reuswap xB*yCx=Aψ∃!xByCx=Aψ∃!yCxBx=Aψ
10 8 9 syl φ∃!xByCx=Aψ∃!yCxBx=Aψ
11 2reuswap2 yC*xxBx=Aψ∃!yCxBx=Aψ∃!xByCx=Aψ
12 moeq *xx=A
13 12 moani *xxBψx=A
14 ancom xBψx=Ax=AxBψ
15 an12 x=AxBψxBx=Aψ
16 14 15 bitri xBψx=AxBx=Aψ
17 16 mobii *xxBψx=A*xxBx=Aψ
18 13 17 mpbi *xxBx=Aψ
19 18 a1i yC*xxBx=Aψ
20 11 19 mprg ∃!yCxBx=Aψ∃!xByCx=Aψ
21 10 20 impbid1 φ∃!xByCx=Aψ∃!yCxBx=Aψ
22 biidd x=Aψψ
23 22 ceqsrexv ABxBx=Aψψ
24 1 23 syl φyCxBx=Aψψ
25 24 reubidva φ∃!yCxBx=Aψ∃!yCψ
26 21 25 bitrd φ∃!xByCx=Aψ∃!yCψ